
using System.Collections; 
using System.Collections.Generic; 
using Cinemachine; 
using DG.Tweening; 
using KBCore.Refs; 
 
using Unity.VisualScripting.Antlr3.Runtime.Tree; 
 
using UnityEngine; 
using UnityEngine.Audio; 
 
 
namespace teamFourFinalProject 
{ 
    public class PlayerController : ValidatedMonoBehaviour 
    { 
        [Header("References")] 
        //For some reason Animator is causing issues with jump. Has been omitted for now 
        //[SerializeField, Self] Animator animator; 
        [SerializeField, Self] Rigidbody rb; 
        [SerializeField, Self] GroundChecker groundChecker; 
        [SerializeField, Anywhere] CinemachineFreeLook freelookVCam; 
        [SerializeField, Anywhere] InputReader input; 
 
 
        [Header("Settings")] 
        [SerializeField] float moveSpeed = 6f; 
        [SerializeField] float rotationSpeed = 15f; 
        [SerializeField] float smoothTime = 0.2f; 
 
        [Header("Jump Settings")] 
        [SerializeField] float jumpForce = 10f; 
        [SerializeField] float jumpDuration = 0.5f; 
        [SerializeField] float jumpCooldown = 0f; 
        [SerializeField] float jumpMaxHeight = 5f; 
        [SerializeField] float gravityMultiplier = 3f; 
        [SerializeField] int maxJumpCount = 2; 
        [SerializeField] float doubleJumpMultiplier = 2; 
        int currentJumpCount = 0; 
        private bool canDoubleJump = false; 
        private bool doubleJumpRequested = false; 
        private Animator animator; 
 
        [Header("Sounds")] 



        AudioSource audioSource; 
        [SerializeField] AudioSource jump; 
        [SerializeField] AudioSource walk; 
        [SerializeField] AudioSource hurt; 
        [SerializeField] AudioClip walkSound; 
        [SerializeField] AudioClip hurtSound; 
 
        [Header("Powerup Settings")] 
        [SerializeField] float dashCooldown = 0f; 
        [HideInInspector] public int tempHealth; 
        [HideInInspector] public bool upgradeAppl; 
        private PowerupData heldPowerup = null; 
        private bool powerupActive = false; 
        public Transform player, destination; 
        public GameObject playerg; 
        public PowerupData powerupData; 
        private PowerupData currentActivePowerup = null; 
 
        [Header("Camera Controller Settings")] 
        [SerializeField] float controllerSensitivity = 300f; 
        [SerializeField] float controllerSmoothTime = 0.2f; //lower = snappier, higher = smoother 
        private Vector2 controllerLookVelocity; 
        private Vector2 currentControllerLook; 
 
        //If making a different way to attack 
        /*[Header("Attack Settings")] 
        [SerializeField] float attackCooldown = 0.5f; 
        [SerializeField] float attackDistance = 1f; 
        [SerializeField] int attackDamage = 10;*/ 
 
        //Animator 
        static readonly int Speed = Animator.StringToHash(name: "Speed"); 
 
        float currentSpeed; 
        float velocity; 
        float jumpVelocity; 
 
 
        Transform mainCam; 
 
        const float ZeroF = 0f; 
 
        Vector3 movement; 
 



        List<JumpTimer> timers; 
        CountdownTimer jumpTimer; 
        CountdownTimer jumpCooldownTimer; 
        CountdownTimer attackTimer; 
        CountdownTimer powerupTimer; 
        CountdownTimer dashCooldownTimer; 
        CountdownTimer throwCooldownTimer; 
 
        StateMachine stateMachine; 
 
        private void Awake() 
        { 
            mainCam = Camera.main.transform; 
            freelookVCam.Follow = transform; 
            freelookVCam.LookAt = transform; 
 
            //Invoke event when observed transform is teleported, adjusting freeLookVCam's 
position accordingly 
            freelookVCam.OnTargetObjectWarped(transform, positionDelta: transform.position - 
freelookVCam.transform.position - Vector3.forward); 
 
            rb.freezeRotation = true; 
 
            //Setting up timers 
            jumpTimer = new CountdownTimer(jumpDuration); 
            jumpCooldownTimer = new CountdownTimer(jumpCooldown); 
            timers = new List<JumpTimer>(capacity: 2) { jumpTimer, jumpCooldownTimer }; 
            dashCooldownTimer = new CountdownTimer(dashCooldown); 
            timers.Add(dashCooldownTimer); 
            throwCooldownTimer = new CountdownTimer(0f); 
            timers.Add(throwCooldownTimer); 
 
            //jumpTimer.OnTimerStart =+ () => jumpVelocity = jumpForce; 
            //jumpTimer.OnTimerStop += () => jumpCooldownTimer.Start(); 
 
            //State Machine 
            stateMachine = new StateMachine(); 
 
            //Declare States 
            //var locomotionState = new LocomotionState(player: this, animator); 
            //var jumpState = new JumpState(player: this, animator); 
 
            //Define transitions 



            //At(from: locomotionState, to: jumpState, condition: new FuncPredicate(() => 
jumpTimer.isRunning)); 
            //At(from: jumpState, to: locomotionState, condition: new FuncPredicate(() => 
groundChecker.isGrounded && !jumpTimer.isRunning)); 
 
            //Set initial state 
            //stateMachine.SetState(locomotionState); 
 
            //Powerup 
            powerupTimer = new CountdownTimer(0f); 
            timers.Add(powerupTimer); 
 
            powerupTimer.OnTimerStop += () => 
            { 
                if (currentActivePowerup != null) 
                { 
                    if (currentActivePowerup is CardPowerup cardPowerup) 
                    { 
                        cardPowerup.HideGhostPreview(); 
                    } 
                    currentActivePowerup.RemoveEffects(this); 
                    Debug.Log("Powerup ended"); 
                    currentActivePowerup = null; 
                } 
 
                heldPowerup = null; 
                powerupActive = false; 
            }; 
        } 
 
        //void At(IState from, IState to, IPredicate condition) => stateMachine.AddTransition(from, 
to, condition); 
        //void Any(IState to, IPredicate condition) => stateMachine.AddAnyTransition(to, condition); 
 
        private void Start() 
        { 
            input.EnablePlayerActions(); 
            animator = GetComponentInChildren<Animator>(); 
        } 
 
        void OnEnable() 
        { 
            input.Jump += OnJump; 
            input.ActivatePowerup += OnPowerup; 



            input.Look += OnLook; 
        } 
 
        void OnDisable() 
        { 
            input.Jump -= OnJump; 
            input.ActivatePowerup -= OnPowerup; 
            input.Look -= OnLook; 
        } 
 
        void OnJump(bool performed) 
        { 
            if (!performed) return; 
 
            if (groundChecker.isGrounded) 
            { 
                walk.Stop(); 
                jump.Play(); 
                animator.SetBool("isJumping", true); 
                animator.SetBool("isFalling", true); 
                jumpTimer.Start(); 
                currentJumpCount = 1; 
                rb.velocity = new Vector3(rb.velocity.x, jumpForce, rb.velocity.z); 
                canDoubleJump = true; 
            } 
 
            else if (canDoubleJump && currentJumpCount < maxJumpCount) 
            { 
                doubleJumpRequested = true; 
                currentJumpCount++; 
                canDoubleJump = false; 
            } 
        } 
 
 
        void OnPowerup() 
        { 
            if (heldPowerup == null || !powerupActive) return; 
 
            //HatBlink Behavior 
            if (currentActivePowerup is HatBlink) 
            { 
                DashThrough(); 
            } 



            else if (currentActivePowerup is CardPowerup cardPowerup) 
            { 
                if (!throwCooldownTimer.isRunning) 
                { 
                    cardPowerup.ThrowPlatform(this); 
                    throwCooldownTimer.Reset(cardPowerup.throwCooldown); 
                    throwCooldownTimer.Start(); 
                } 
 
                cardPowerup.HideGhostPreview(); 
            } 
        } 
 
        void OnLook(Vector2 lookDelta, bool isMouse) 
        { 
            if (isMouse) 
            { 
                freelookVCam.m_XAxis.Value += lookDelta.x; 
                freelookVCam.m_YAxis.Value += lookDelta.y; 
            } 
 
            else 
            { 
                { 
                    currentControllerLook = Vector2.SmoothDamp( 
                        currentControllerLook, 
                        lookDelta, 
                        ref controllerLookVelocity, 
                        controllerSmoothTime 
                        ); 
 
                    freelookVCam.m_XAxis.Value += lookDelta.x * controllerSensitivity * 
Time.deltaTime; 
                    freelookVCam.m_YAxis.Value -= lookDelta.y * controllerSensitivity * 
Time.deltaTime; 
                } 
            } 
        } 
 
        private void Update() 
        { 
            //Debug.Log("Camera forward: " + Camera.main.transform.forward); 
 
            movement = new Vector3(input.Direction.x, y: 0f, z: input.Direction.y); 



 
            HandleAnimator(); 
            HandleTimers(); 
 
            if (heldPowerup is CardPowerup cardPowerup && powerupActive) 
            { 
                cardPowerup.UpdateGhost(this); 
            } 
        } 
 
        private void FixedUpdate() 
        { 
            HandleJump(); 
            HandleMovement(); 
        } 
        void HandleAnimator() 
        { 
            //animator.SetFloat(id: Speed, currentSpeed); 
        } 
 
        void HandleTimers() 
        { 
            foreach (var timer in timers) 
            { 
                timer.Tick(Time.deltaTime); 
            } 
        } 
 
        public void PickupPowerup(PowerupData newPowerup) 
        { 
            if (powerupActive) 
            { 
                currentActivePowerup.RemoveEffects(this); 
                powerupTimer.Stop(); 
                currentActivePowerup = null; 
            } 
 
            heldPowerup = newPowerup; 
            HandlePowerup(); 
            Debug.Log($"Picked up powerup: {heldPowerup.GetType().Name}"); 
        } 
 
        public void PickupKey(KeyData newKey) 
        { 



            if (!SceneManager.instance.collectedKeyIDs.Contains(newKey.keyID)) 
            { 
                SceneManager.instance.collectedKeyIDs.Add(newKey.keyID); 
                Debug.Log($"Picked up key: {newKey.keyID}"); 
            } 
 
            else 
            { 
                Debug.Log($"Key {newKey.keyID} is already collected"); 
            } 
        } 
 
        public void HandleJump() 
        { 
            if (doubleJumpRequested) 
            { 
                animator.SetBool("isDoubleJumping", true); 
                jump.Play(); 
                walk.Stop(); 
                float doubleJumpHeight = jumpMaxHeight * doubleJumpMultiplier; 
                float doubleJumpVelocity = Mathf.Sqrt(2 * doubleJumpHeight * 
Mathf.Abs(Physics.gravity.y)); 
                //jumpVelocity = jumpForce * doubleJumpMultiplier; 
                jumpVelocity = doubleJumpVelocity; 
                doubleJumpRequested = false; 
            } 
 
            else if (!groundChecker.isGrounded) 
            { 
                walk.Stop(); 
                jumpVelocity += Physics.gravity.y * gravityMultiplier * Time.fixedDeltaTime; 
            } 
 
            //If not jumping and grounded, keep jump velocity at 0 
            if (!jumpTimer.isRunning && groundChecker.isGrounded) 
            { 
 
                animator.SetBool("isFalling", false); 
                animator.SetBool("isJumping", false); 
                animator.SetBool("isDoubleJumping", false); 
                jumpVelocity = ZeroF; 
                jumpTimer.Stop(); 
                currentJumpCount = 0; 
                return; 



            } 
 
            //If jumping or falling calculate velocity 
            if (jumpTimer.isRunning) 
            { 
                //Progress point for inital burst of velocity 
                float launchPoint = 0.9f; 
                if (jumpTimer.Progress > launchPoint) 
                { 
                    //Calculate the velocity required to reach the jump height using physics equations v 
= sqrt(2gh) (height (h), gravity (g), velocity (v) 
                    jumpVelocity = Mathf.Sqrt(f: 2 * (jumpMaxHeight * doubleJumpMultiplier) * 
Mathf.Abs(Physics.gravity.y)); 
                } 
 
                else 
                { 
                    //Gradually apply less velocity as the jump progresses 
                    jumpVelocity += (1 - jumpTimer.Progress) * jumpForce * Time.fixedDeltaTime; 
                } 
            } 
 
            else 
            { 
                jumpVelocity += Physics.gravity.y * gravityMultiplier * Time.fixedDeltaTime; 
            } 
 
            //Apply Velocity 
            rb.velocity = new Vector3(rb.velocity.x, jumpVelocity, rb.velocity.z); 
 
        } 
 
        public void HandleMovement() 
        { 
            //Rotate movement direction to match camera rotation 
            var adjustedDirection = Quaternion.AngleAxis(mainCam.eulerAngles.y, Vector3.up) * 
movement; 
            if (adjustedDirection.magnitude > ZeroF) 
            { 
                HandleRotation(adjustedDirection); 
                HandleHorizontalMovement(adjustedDirection); 
                SmoothSpeed(adjustedDirection.magnitude); 
            } 
            else 



            { 
                SmoothSpeed(ZeroF); 
 
                //Reset horizontal velocity 
                rb.velocity = new Vector3(x: ZeroF, rb.velocity.y, z: ZeroF); 
                animator.SetBool("isFalling", false); 
                animator.SetBool("isWalking", false); 
 
                walk.Stop(); 
            } 
        } 
 
        void HandleHorizontalMovement(Vector3 adjustedDirection) 
        { 
            //Move the player 
 
            animator.SetBool("isFalling", false); 
            animator.SetBool("isWalking", true); 
            Vector3 velocity = adjustedDirection * moveSpeed * Time.fixedDeltaTime; 
            rb.velocity = new Vector3(velocity.x, rb.velocity.y, velocity.z); 
            if (!walk.isPlaying && groundChecker.isGrounded) 
            { 
                walk.Play(); 
            } 
 
        } 
 
        void HandleRotation(Vector3 adjustedDirection) 
        { 
            //Adjust rotation to match movement direction 
            var targetRotation = Quaternion.LookRotation(adjustedDirection); 
            transform.rotation = Quaternion.RotateTowards(from: transform.rotation, to: 
targetRotation, maxDegreesDelta: rotationSpeed * Time.deltaTime); 
            transform.LookAt(worldPosition: transform.position + adjustedDirection); 
        } 
 
        void SmoothSpeed(float value) 
        { 
            currentSpeed = Mathf.SmoothDamp(current: currentSpeed, target: value, ref velocity, 
smoothTime); 
 
        } 
        public void SetInvulnerable(bool value) 
        { 



            //Disable damage handling 
        } 
 
        public void SetPassThroughEnemies(bool value) 
        { 
            gameObject.layer = value ? LayerMask.NameToLayer("HatBlink") : 
LayerMask.NameToLayer("Player"); 
        } 
 
        public void DashThrough() 
        { 
            if (!powerupActive || dashCooldownTimer.isRunning) return; 
 
            if (CompareTag("Player")) 
            { 
                playerg.SetActive(false); 
                player.position = destination.position; 
                playerg.SetActive(true); 
 
                Debug.Log("Dash"); 
 
                dashCooldownTimer.Reset(dashCooldown); 
                dashCooldownTimer.Start(); 
            } 
        } 
        void HandlePowerup() 
        { 
            if (!powerupActive && heldPowerup != null) 
            { 
                heldPowerup.ApplyEffects(this); 
                powerupTimer.Reset(heldPowerup.duration); 
                powerupTimer.Start(); 
                powerupActive = true; 
                currentActivePowerup = heldPowerup; 
 
                Debug.Log($"Activated powerup: {heldPowerup.name}"); 
            } 
        } 
    } 
} 
 


