using System.Collections;

using System.Collections.Generic;
using Cinemachine;

using DG.Tweening;

using KBCore.Refs;

using Unity.VisualScripting.Antlr3.Runtime.Tree;

using UnityEngine;
using UnityEngine.Audio;

namespace teamFourFinalProject

{

public class PlayerController : ValidatedMonoBehaviour
{
[Header("References")]
/[For some reason Animator is causing issues with jump. Has been omitted for now
/[[SerializeField, Self] Animator animator;
[SerializeField, Self] Rigidbody rb;
[SerializeField, Self] GroundChecker groundChecker;
[SerializeField, Anywhere] CinemachineFreelLook freelookVCam;
[SerializeField, Anywhere] InputReader input;

[Header("Settings")]

[SerializeField] float moveSpeed = 6f;
[SerializeField] float rotationSpeed = 15f;
[SerializeField] float smoothTime = 0.2f;

[Header("Jump Settings")]

[SerializeField] float jumpForce = 10f;
[SerializeField] float jumpDuration = 0.5f;
[SerializeField] float jumpCooldown = Of;
[SerializeField] float jumpMaxHeight = 5f;
[SerializeField] float gravityMultiplier = 3f;
[SerializeField] int maxJumpCount = 2;
[SerializeField] float doubleJumpMultiplier = 2;
int currentJumpCount = 0;

private bool canDoubleJump = false;
private bool doubleJumpRequested = false;
private Animator animator;

[Header("Sounds")]

AudioSource audioSource;
[SerializeField] AudioSource jump;
[SerializeField] AudioSource walk;
[SerializeField] AudioSource hurt;
[SerializeField] AudioClip walkSound;
[SerializeField] AudioClip hurtSound;

[Header("Powerup Settings")]

[SerializeField] float dashCooldown = Of;
[Hidelnlnspector] public int tempHealth;
[Hidelnlnspector] public bool upgradeAppl;

private PowerupData heldPowerup = null;

private bool powerupActive = false;

public Transform player, destination;

public GameObject playerg;

public PowerupData powerupData;

private PowerupData currentActivePowerup = null;

[Header("Camera Controller Settings")]

[SerializeField] float controllerSensitivity = 300f;

[SerializeField] float controllerSmoothTime = 0.2f; //lower = snappier, higher = smoother
private Vector2 controllerLookVelocity;

private Vector2 currentControllerLook;

//If making a different way to attack
[*[Header("Attack Settings")]
[SerializeField] float attackCooldown = 0.5f;
[SerializeField] float attackDistance = 1f;
[SerializeField] int attackDamage = 10;*/

/[Animator
static readonly int Speed = Animator.StringToHash(name: "Speed");

float currentSpeed;
float velocity;

float jumpVelocity;
Transform mainCam;

const float ZeroF = 0f;

Vector3 movement;

List<dJumpTimer> timers;
CountdownTimer jumpTimer;
CountdownTimer jumpCooldownTimer;
CountdownTimer attackTimer;
CountdownTimer powerupTimer;
CountdownTimer dashCooldownTimer;
CountdownTimer throwCooldownTimer;

StateMachine stateMachine;

private void Awake()

{
mainCam = Camera.main.transform;
freelookVCam.Follow = transform;
freelookVCam.LookAt = transform;

/lInvoke event when observed transform is teleported, adjusting freeLookVCam's
position accordingly

freelookVCam.OnTargetObjectWarped(transform, positionDelta: transform.position -
freelookVCam.transform.position - Vector3.forward);

rb.freezeRotation = true;

//Setting up timers

jumpTimer = new CountdownTimer(jumpDuration);

jumpCooldownTimer = new CountdownTimer(jumpCooldown);

timers = new List<JumpTimer>(capacity: 2) { jumpTimer, jumpCooldownTimer };
dashCooldownTimer = new CountdownTimer(dashCooldown);
timers.Add(dashCooldownTimer);

throwCooldownTimer = new CountdownTimer(0f);
timers.Add(throwCooldownTimer);

lljumpTimer.OnTimerStart =+ () => jumpVelocity = jumpForce;
/ljumpTimer.OnTimerStop += () => jumpCooldownTimer.Start();

//State Machine
stateMachine = new StateMachine();

/[Declare States
/Ivar locomotionState = new LocomotionState(player: this, animator);

[/Ivar jumpState = new JumpState(player: this, animator);

//Define transitions

//At(from: locomotionState, to: jumpState, condition: new FuncPredicate(() =>
jumpTimer.isRunning));

/[At(from: jumpState, to: locomotionState, condition: new FuncPredicate(() =>
groundChecker.isGrounded && ljumpTimer.isRunning));

/[Set initial state
/[stateMachine.SetState(locomotionState);

/[Powerup
powerupTimer = new CountdownTimer(0f);
timers.Add(powerupTimer);

powerupTimer.OnTimerStop += () =>

{

if (currentActivePowerup != null)

{

if (currentActivePowerup is CardPowerup cardPowerup)
{

cardPowerup.HideGhostPreview();
}
currentActivePowerup.RemoveEffects(this);
Debug.Log("Powerup ended");
currentActivePowerup = null;

}

heldPowerup = null;
powerupActive = false;
2
}

/Ivoid At(IState from, IState to, IPredicate condition) => stateMachine.AddTransition(from,
to, condition);
/Ivoid Any(IState to, IPredicate condition) => stateMachine.AddAnyTransition(to, condition);

private void Start()

{
input.EnablePlayerActions();

animator = GetComponentInChildren<Animator>();

}

void OnEnable()
{

input.Jump += OnJump;
input.ActivatePowerup += OnPowerup;

input.Look += OnLook;
}

void OnDisable()

{
input.Jump -= OnJump;
input.ActivatePowerup -= OnPowerup;
input.Look -= OnLook;

}

void Ondump(bool performed)
{

if (Iperformed) return;

if (groundChecker.isGrounded)
{
walk.Stop();
jump.Play();
animator.SetBool("isdJumping", true);
animator.SetBool("isFalling", true);
jumpTimer.Start();
currentJumpCount = 1;
rb.velocity = new Vector3(rb.velocity.x, jumpForce, rb.velocity.z);
canDoubleJump = true;

}

else if (canDoubleJump && currentJumpCount < maxJumpCount)
{
doubleJumpRequested = true;
currentJumpCount++;
canDoubleJump = false;
}
}

void OnPowerup()

{

if (heldPowerup == null || !powerupActive) return;

//[HatBlink Behavior
if (currentActivePowerup is HatBlink)

{
DashThrough();

}

else if (currentActivePowerup is CardPowerup cardPowerup)
{
if ('throwCooldownTimer.isRunning)
{
cardPowerup.ThrowPlatform(this);
throwCooldownTimer.Reset(cardPowerup.throwCooldown);
throwCooldownTimer.Start();

}

cardPowerup.HideGhostPreview();

}
}

void OnLook(Vector2 lookDelta, bool isMouse)
{
if (isMouse)
{
freelookVCam.m_XAxis.Value += lookDelta.x;
freelookVCam.m_YAxis.Value += lookDelta.y;

}

else

{
{

currentControllerLook = Vector2.SmoothDamp(
currentControllerLook,
lookDelta,
ref controllerLookVelocity,
controllerSmoothTime

)i

freelookVCam.m_XAxis.Value += lookDelta.x * controllerSensitivity *
Time.deltaTime;

freelookVCam.m_YAxis.Value -= lookDelta.y * controllerSensitivity *
Time.deltaTime;

}
}
}

private void Update()
{

//Debug.Log("Camera forward: " + Camera.main.transform.forward);

movement = new Vector3(input.Direction.x, y: Of, z: input.Direction.y);

HandleAnimator();
HandleTimers();

if (heldPowerup is CardPowerup cardPowerup && powerupActive)

{
cardPowerup.UpdateGhost(this);

}
}

private void FixedUpdate()

{
HandleJump();

HandleMovement();

}

void HandleAnimator()

{
/lanimator.SetFloat(id: Speed, currentSpeed);

}

void HandleTimers()

{

foreach (var timer in timers)

{

timer.Tick(Time.deltaTime);

}
}

public void PickupPowerup(PowerupData newPowerup)

{

if (powerupActive)

{
currentActivePowerup.RemoveEffects(this);
powerupTimer.Stop();
currentActivePowerup = null;

}

heldPowerup = newPowerup;
HandlePowerup();
Debug.Log($"Picked up powerup: {heldPowerup.GetType().Name}");

}

public void PickupKey(KeyData newKey)
{

if (!SceneManager.instance.collectedKeylDs.Contains(newKey.keyID))

SceneManager.instance.collectedKeylDs.Add(newKey.keyID);
Debug.Log($"Picked up key: {newKey.keyID}");
}

else

{
Debug.Log($"Key {newKey.keyID} is already collected");
}
}

public void HandleJump()

{
if (doubleJumpRequested)

{

animator.SetBool("isDoubleJumping", true);

jump.Play();

walk.Stop();

float doubleJumpHeight = jumpMaxHeight * doubleJumpMultiplier;

float doubleJumpVelocity = Mathf.Sqrt(2 * doubleJumpHeight *
Mathf.Abs(Physics.gravity.y));

lljumpVelocity = jumpForce * doubleJumpMultiplier;

jumpVelocity = doubleJumpVelocity;

doubleJumpRequested = false;

}

else if (IgroundChecker.isGrounded)

{
walk.Stop();
jumpVelocity += Physics.gravity.y * gravityMultiplier * Time.fixedDeltaTime;

}

//If not jumping and grounded, keep jump velocity at 0
if (jumpTimer.isRunning && groundChecker.isGrounded)

{

animator.SetBool("isFalling", false);
animator.SetBool("isdJumping", false);
animator.SetBool("isDoubleJumping", false);
jumpVelocity = ZeroF;

jumpTimer.Stop();

currentJumpCount = 0;

return;

}

//If jumping or falling calculate velocity
if jumpTimer.isRunning)
{
//Progress point for inital burst of velocity
float launchPoint = 0.9f;
if jumpTimer.Progress > launchPoint)
{
/[Calculate the velocity required to reach the jump height using physics equations v
= sqrt(2gh) (height (h), gravity (g), velocity (v)
jumpVelocity = Mathf.Sqrt(f: 2 * (jumpMaxHeight * doubleJumpMultiplier) *
Mathf.Abs(Physics.gravity.y));
}

else
{
//Gradually apply less velocity as the jump progresses
jumpVelocity += (1 - jumpTimer.Progress) * jumpForce * Time.fixedDeltaTime;
}
}

else
{

jumpVelocity += Physics.gravity.y * gravityMultiplier * Time.fixedDeltaTime;
}

/[Apply Velocity
rb.velocity = new Vector3(rb.velocity.x, jumpVelocity, rb.velocity.z);

}

public void HandleMovement()
{
//Rotate movement direction to match camera rotation
var adjustedDirection = Quaternion.AngleAxis(mainCam.eulerAngles.y, Vector3.up) *
movement;
if (adjustedDirection.magnitude > ZeroF)
{
HandleRotation(adjustedDirection);
HandleHorizontalMovement(adjustedDirection);
SmoothSpeed(adjustedDirection.magnitude);

}

else

SmoothSpeed(ZeroF);

//[Reset horizontal velocity

rb.velocity = new Vector3(x: ZeroF, rb.velocity.y, z: ZeroF);
animator.SetBool("isFalling", false);
animator.SetBool("isWalking", false);

walk.Stop();
}
}
void HandleHorizontalMovement(Vector3 adjustedDirection)
{
//Move the player
animator.SetBool("isFalling", false);
animator.SetBool("isWalking", true);
Vector3 velocity = adjustedDirection * moveSpeed * Time.fixedDeltaTime;
rb.velocity = new Vector3(velocity.x, rb.velocity.y, velocity.z);
if ('walk.isPlaying && groundChecker.isGrounded)
{
walk.Play();
}
}

void HandleRotation(Vector3 adjustedDirection)
{
//Adjust rotation to match movement direction
var targetRotation = Quaternion.LookRotation(adjustedDirection);
transform.rotation = Quaternion.Rotate Towards(from: transform.rotation, to:
targetRotation, maxDegreesDelta: rotationSpeed * Time.deltaTime);
transform.LookAt(worldPosition: transform.position + adjustedDirection);

}

void SmoothSpeed(float value)

{

currentSpeed = Mathf.SmoothDamp(current: currentSpeed, target: value, ref velocity,
smoothTime);

}

public void Setlnvulnerable(bool value)

{

/[Disable damage handling
}

public void SetPassThroughEnemies(bool value)

{

gameObject.layer = value ? LayerMask.NameToLayer("HatBlink") :
LayerMask.NameToLayer("Player");

}

public void DashThrough()
{

if (IpowerupActive || dashCooldownTimer.isRunning) return;

if (CompareTag("Player"))

{
playerg.SetActive(false);
player.position = destination.position;
playerg.SetActive(true);

Debug.Log("Dash");

dashCooldownTimer.Reset(dashCooldown);
dashCooldownTimer.Start();

}
}

void HandlePowerup()

{
if (lpowerupActive && heldPowerup = null)

{
heldPowerup.ApplyEffects(this);
powerup Timer.Reset(heldPowerup.duration);
powerupTimer.Start();
powerupActive = true;
currentActivePowerup = heldPowerup;

Debug.Log($"Activated powerup: {heldPowerup.name}");

