using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.ProBuilder.MeshOperations;

namespace teamFourFinalProject

{

[CreateAssetMenu(fileName = "CardPlatformPowerup", menuName =
"Platformer/Powerups/CardPlatform")]
public class CardPowerup : PowerupData

{

public GameObject redPlat;
public GameObject blackPlat;

public GameObject ghostPlat;
private GameObject activeGhost;

public LayerMask wallLayerMask;

public float despawnTimer = 5.0f;
public float throwCooldown = 0.5f;
public float spawnDistance = 3f;
public int cardVal = 0;

public override void ApplyEffects(PlayerController player)

{

Debug.Log("Applying Card Powerup effects");
var groundChecker = player.GetComponent<GroundChecker>();
var healthManager = player.GetComponent<HealthManager>();

if (groundChecker == null || healthManager == null)

{

Debug.LogWarning("Missing components on player");
return;

}

if (cardVal == 0)

{
healthManager.curHealth += 1;
player.tempHealth = (int)healthManager.curHealth;
player.upgradeAppl = true;

}

else if (cardVal == 1)

{
/Iplayer.changeMoveSpeed(3);

player.upgradeAppl = true;
}

Debug.Log("CardPlatform powerup applied");
}

public override void RemoveEffects(PlayerController player)

{

var groundChecker = player.GetComponent<GroundChecker>();
var healthManager = player.GetComponent<HealthManager>();

if (groundChecker == null || healthManager == null)

{

Debug.LogWarning("Missing components on player");
return;

}

if (player.upgradeAppl)

{
player.upgradeAppl = false;

if (cardVal == 0 && healthManager.curHealth == player.tempHealth)
{

healthManager.curHealth -= 1;

}

else if (cardVal == 1)

{
/Iplayer.changeMoveSpeed(-3);
}
}

Debug.Log("CardPlatform powerup removed");

}

public void ThrowPlatform(PlayerController player)

{
Camera cam = Camera.main;
Ray ray = new Ray(cam.transform.position, cam.transform.forward);
RaycastHit hit;

// Raycast to find the wall or surface to stick to
if (Physics.Raycast(ray, out hit, 10f, wallLayerMask))

{

/' If we hit something (wall), adjust the spawn position
Vector3 spawnPos = hit.point + hit.normal * 0.05f; // Small offset to avoid clipping
Quaternion spawnRot = Quaternion.LookRotation(-hit.normal);

/I Instantiate the platform at the adjusted position

GameObject platToSpawn = cardVal == 0 ? redPlat : blackPlat;
GameObject platform = Instantiate(platToSpawn, spawnPos, spawnRot);
Destroy(platform, despawnTimer);

Debug.Log("Platform thrown and aligned to wall");
}
else
{
/'If no wall hit, spawn the platform in front of the player, further away
Vector3 flatForward = cam.transform.forward;
flatForward.y = Of; // Keep it on the ground
flatForward.Normalize();

/I Move the spawn position further away based on the spawnDistance
Vector3 spawnPos = player.transform.position + flatForward * spawnDistance;
spawnPos.y -= 0.5f; //Adjusts platform position!

Quaternion spawnRot = Quaternion.LookRotation(flatForward);

/I Instantiate the platform

GameObject platToSpawn = cardVal == 0 ? redPlat : blackPlat;
GameObject platform = Instantiate(platToSpawn, spawnPos, spawnRot);
Destroy(platform, despawnTimer);

Debug.Log("Platform thrown and aligned to flat ground");

}
}

public void UpdateGhost(PlayerController player)
{

Camera cam = Camera.main;
Ray ray = new Ray(cam.transform.position, cam.transform.forward);
RaycastHit hit;

Vector3 ghostPos;
Quaternion ghostRot;

if (Physics.Raycast(ray, out hit, 10f, wallLayerMask))
{

}

/I Align to wall surface
ghostPos = hit.point + hit.normal * 0.05f;
ghostRot = Quaternion.LookRotation(-hit.normal);

}

else

{
I/l Align in front of player, slightly offset and on flat ground
Vector3 flatForward = cam.transform.forward;
flatForward.y = Of;
flatForward.Normalize();

ghostPos = player.transform.position + flatForward * spawnDistance;
ghostPos.y -= 0.5f; //Adjusts ghost platform position!
ghostRot = Quaternion.LookRotation(flatForward);

}

if (activeGhost == null)

{
GameObject platToUse = cardVal == 0 ? redPlat : blackPlat;
activeGhost = GameObiject.Instantiate(platToUse);
SetGhostAppearance(activeGhost);

}

activeGhost.transform.position = ghostPos;
activeGhost.transform.rotation = ghostRot;

Debug.DrawRay(ray.origin, ray.direction * 10f, Color.cyan, 1f);

public void HideGhostPreview()

{

}

if (activeGhost != null)

GameObject.Destroy(activeGhost);
activeGhost = null;

}

private void SetGhostAppearance(GameObiject ghost)

{

foreach (var renderer in ghost.GetComponentsinChildren<Renderer>())

{

renderer.material = Resources.Load<Material>("GhostMaterial");

}

foreach (var collider in ghost.GetComponentsInChildren<Collider>())

{
collider.enabled = false;
Y
}
Y
}

