
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.ProBuilder.MeshOperations;

namespace teamFourFinalProject
{
 [CreateAssetMenu(fileName = "CardPlatformPowerup", menuName =
"Platformer/Powerups/CardPlatform")]
 public class CardPowerup : PowerupData
 {
 public GameObject redPlat;
 public GameObject blackPlat;

 public GameObject ghostPlat;
 private GameObject activeGhost;

 public LayerMask wallLayerMask;

 public float despawnTimer = 5.0f;
 public float throwCooldown = 0.5f;
 public float spawnDistance = 3f;
 public int cardVal = 0;

 public override void ApplyEffects(PlayerController player)
 {
 Debug.Log("Applying Card Powerup effects");
 var groundChecker = player.GetComponent<GroundChecker>();
 var healthManager = player.GetComponent<HealthManager>();

 if (groundChecker == null || healthManager == null)
 {
 Debug.LogWarning("Missing components on player");
 return;
 }

 if (cardVal == 0)
 {
 healthManager.curHealth += 1;
 player.tempHealth = (int)healthManager.curHealth;
 player.upgradeAppl = true;
 }

 else if (cardVal == 1)

 {
 //player.changeMoveSpeed(3);
 player.upgradeAppl = true;
 }

 Debug.Log("CardPlatform powerup applied");
 }

 public override void RemoveEffects(PlayerController player)
 {
 var groundChecker = player.GetComponent<GroundChecker>();
 var healthManager = player.GetComponent<HealthManager>();

 if (groundChecker == null || healthManager == null)
 {
 Debug.LogWarning("Missing components on player");
 return;
 }

 if (player.upgradeAppl)
 {
 player.upgradeAppl = false;

 if (cardVal == 0 && healthManager.curHealth == player.tempHealth)
 {
 healthManager.curHealth -= 1;
 }
 else if (cardVal == 1)
 {
 //player.changeMoveSpeed(-3);
 }
 }
 Debug.Log("CardPlatform powerup removed");
 }

 public void ThrowPlatform(PlayerController player)
 {
 Camera cam = Camera.main;
 Ray ray = new Ray(cam.transform.position, cam.transform.forward);
 RaycastHit hit;

 // Raycast to find the wall or surface to stick to
 if (Physics.Raycast(ray, out hit, 10f, wallLayerMask))
 {

 // If we hit something (wall), adjust the spawn position
 Vector3 spawnPos = hit.point + hit.normal * 0.05f; // Small offset to avoid clipping
 Quaternion spawnRot = Quaternion.LookRotation(-hit.normal);

 // Instantiate the platform at the adjusted position
 GameObject platToSpawn = cardVal == 0 ? redPlat : blackPlat;
 GameObject platform = Instantiate(platToSpawn, spawnPos, spawnRot);
 Destroy(platform, despawnTimer);

 Debug.Log("Platform thrown and aligned to wall");
 }
 else
 {
 // If no wall hit, spawn the platform in front of the player, further away
 Vector3 flatForward = cam.transform.forward;
 flatForward.y = 0f; // Keep it on the ground
 flatForward.Normalize();

 // Move the spawn position further away based on the spawnDistance
 Vector3 spawnPos = player.transform.position + flatForward * spawnDistance;
 spawnPos.y -= 0.5f; //Adjusts platform position!

 Quaternion spawnRot = Quaternion.LookRotation(flatForward);

 // Instantiate the platform
 GameObject platToSpawn = cardVal == 0 ? redPlat : blackPlat;
 GameObject platform = Instantiate(platToSpawn, spawnPos, spawnRot);
 Destroy(platform, despawnTimer);

 Debug.Log("Platform thrown and aligned to flat ground");
 }
 }

 public void UpdateGhost(PlayerController player)
 {
 Camera cam = Camera.main;
 Ray ray = new Ray(cam.transform.position, cam.transform.forward);
 RaycastHit hit;

 Vector3 ghostPos;
 Quaternion ghostRot;

 if (Physics.Raycast(ray, out hit, 10f, wallLayerMask))
 {

 // Align to wall surface
 ghostPos = hit.point + hit.normal * 0.05f;
 ghostRot = Quaternion.LookRotation(-hit.normal);
 }
 else
 {
 // Align in front of player, slightly offset and on flat ground
 Vector3 flatForward = cam.transform.forward;
 flatForward.y = 0f;
 flatForward.Normalize();

 ghostPos = player.transform.position + flatForward * spawnDistance;
 ghostPos.y -= 0.5f; //Adjusts ghost platform position!
 ghostRot = Quaternion.LookRotation(flatForward);
 }

 if (activeGhost == null)
 {
 GameObject platToUse = cardVal == 0 ? redPlat : blackPlat;
 activeGhost = GameObject.Instantiate(platToUse);
 SetGhostAppearance(activeGhost);
 }

 activeGhost.transform.position = ghostPos;
 activeGhost.transform.rotation = ghostRot;

 Debug.DrawRay(ray.origin, ray.direction * 10f, Color.cyan, 1f);
 }

 public void HideGhostPreview()
 {
 if (activeGhost != null)
 {
 GameObject.Destroy(activeGhost);
 activeGhost = null;
 }
 }

 private void SetGhostAppearance(GameObject ghost)
 {
 foreach (var renderer in ghost.GetComponentsInChildren<Renderer>())
 {
 renderer.material = Resources.Load<Material>("GhostMaterial");
 }

 foreach (var collider in ghost.GetComponentsInChildren<Collider>())
 {
 collider.enabled = false;
 }
 }
 }
}

